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Fuzzy and Rough Set Approaches for 
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Abstract. The management of uncertainty in databases is necessary for real world 
applications, especially for systems involving spatial data such as geographic in-
formation systems. Rough and fuzzy sets are important techniques that can be 
used in various ways for modeling uncertainty in data and in spatial relationships 
between data entities. This chapter discusses various approaches involving rough 
and fuzzy sets for spatial database applications such as GIS. 
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1   Introduction 

A spatial database is a collection of data concerning objects located in some refer-
ence space, which attempts to model some enterprise in the real world. The real 
world abounds in uncertainty, and any attempt to model aspects of the world 
should include some mechanism for incorporating uncertainty. There may be un-
certainty in the understanding of the enterprise or in the quality or meaning of the 
data. There may be uncertainty in the model, which leads to uncertainty in entities 
or the attributes describing them. And at a higher level, there may be uncertainty 
about the level of uncertainty prevalent in the various aspects of the database. 
There has been a strong demand to provide approaches that deal with inaccuracy 
and uncertainty in geographical information systems (GIS) and their underlying 
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spatial databases. The issue of spatial database accuracy has been viewed as criti-
cal to the successful implementation and long-term viability of GIS technology 
[63]. There are a variety of aspects of potential errors in GIS encompassed by the 
general term "accuracy." However, here we are only interested in those aspects 
that lend themselves to modeling by fuzzy and rough set techniques. 

Many operations are applied to spatial data under the assumption that features, 
attributes and their relationships have been specified a priori in a precise and exact 
manner. However, inexactness often exists in the positions of features and the as-
signment of attribute values and may be introduced at various stages of data com-
pilation and database development. Models of uncertainty have been proposed for 
spatial information that incorporate ideas from natural language processing, the 
value of information concept, non-monotonic logic and fuzzy sets, and evidential 
and probability theory [51]. In modern GIS there is a need to more precisely mod-
el and represent the underlying uncertain spatial data.  Models have been proposed 
recently allowing enriching database models to manage uncertain spatial data.  A 
major motivation for this is that there exist geographic objects with uncertain 
boundaries, and fuzzy sets are a natural way to represent this uncertainty [11].  An 
ontology for spatial data has been developed in which the terms imperfection,  
error, imprecision and vagueness are organized into a hierarchy to assist in man-
agement of these issues [19].  At the most basic level of vagueness modeling ap-
proaches for spatial data are considered including fuzzy set and rough set theory. 

The following section discusses uncertainty and how rough set uncertainty can 
be managed in databases, as well as the rough set modeling of spatial data. Section 
3 provides an overview of various types of representations of spatial phenomena 
using fuzzy and rough set techniques. The representation of spatial relationships is 
discussed in Section 4, along with the management of uncertainty in these rela-
tionships. In Section 5 data mining for uncertain data is discussed. Lastly, conclu-
sions and directions for future research are presented.  

2   Background 

In this section we discuss some of the approaches to modeling uncertainty in spa-
tial data using fuzzy and rough set theory.  Then we provide a brief introduction to 
the basic concepts and terminology of fuzzy set and rough set theory. 

2.1   Overview 

In general, the idea of implementing fuzzy set theory as a way to model uncer-
tainty in spatial databases has a long history. Some early work by geographical 
scientists in the 1970s utilized fuzzy sets [61] in topics such as behavioral geogra-
phy and geographical decision making [23].  However, the first consistent ap-
proach to the use of fuzzy set theory as it could be applied in GIS was developed 
by Robinson [39].  He has considered several models as appropriate for this situa-
tion—two early fuzzy database approaches using simple membership values in re-
lations, and a similarity-based approach. In modeling a situation in which both the 
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data and relationships are imprecise, he assesses that this situation entails  
imprecision intrinsic to natural language which is possibilistic in nature. For ex-
ample if we are classifying various slopes in a particular region and wish to use a 
fuzzy set representation of steep slopes then we might have the start of steepness 
as a = 15 degrees and b= 30 degrees for slopes that are certainly classified as 
steep, i.e., have membership value of 1. Another application is in soil classifica-
tion as a certain soil sample may have 0.49 membership in the set of Loamy Soil, 
it may have 0.33 membership in Sandy Soil, and it may have 0.18 membership in 
Rocky Soil. Another spatial modeling approach considers some objects as com-
prising a core (full membership of 1.0 in the set in question), or a boundary (the 
area beyond which they have no or negligible membership in the set). A classic 
spatial example of the core and boundary problem is determining where a forest 
begins. Is it determined based on a hard threshold of trees per hectare? This may 
be the boundary set by management policy, but it is likely not the natural defini-
tion. There are several ways to manage these uncertain boundaries [22]. If a  
spatial database can represent the outlying trees as being partial members of the 
forest, then a decision maker will see these features as being partial members if 
the database is queried or the data presented on a graphical user interface.  

More recently, there have been a number of efforts utilizing fuzzy sets for spa-
tial databases including: capturing spatial relationships [12], querying spatial in-
formation [55], and object-oriented modeling [14]. Models have been proposed in 
recent years that allow for enriching database models to manage uncertain spatial 
data [35]. A major motivation for this is that there exist geographic objects with 
uncertain boundaries, and fuzzy sets are a natural way to represent this  
uncertainty. 

A description of spatial data using rough sets was proposed in the ROSE sys-
tem [41], which focused on a formal modeling framework for realm-based spatial 
data types in general.  In [58] Worboys models imprecision in spatial data based 
on the resolution at which the data is represented, and for issues related to the in-
tegration of such data.  This approach relies on the issue of indiscernability – a 
core concept for rough sets – but does not carry over the entire framework and is 
just described as “reminiscent of the theory of rough sets” [59].   Ahlqvist and col-
leagues [2] used a rough set approach to define a rough classification of spatial da-
ta and to represent spatial locations. They also proposed a measure for quality of a 
rough classification compared to a crisp classification and evaluated their tech-
nique on actual data from vegetation map layers. They considered the combination 
of fuzzy and rough set approaches for reclassification as required by the integra-
tion of geographic data.  Another research group in a mapping and GIS context 
[57] have developed an approach using a rough raster space for the field represen-
tation of a spatial entity and evaluated it on a classification case study for remote 
sensing images.  In [10] Bittner and Stell consider K-labeled partitions, which can 
represent maps, and then develop their relationship to rough sets to approximate 
map objects with vague boundaries.  Additionally they investigate stratified parti-
tions, which can be used to capture levels of details or granularity such as in con-
sideration of scale transformations in maps, and extend this approach using the 
concepts of stratified rough sets. 
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2.2   Fuzzy Set Basics 

Extensions to ordinary set theory, known as fuzzy set theory,  provide widely rec-
ognized representations of imprecision and vagueness [61]. Here we will overview 
some basic concepts of fuzzy sets and a more complete introduction can be found 
in several comprehensive sources [18, 29, 38].  

Conventionally we can specify a set C by its characteristic function, Char C(x).  
If U is the universal set from which values of C are taken, then we can represent C 
as 

          C = { x |  x ∈ U and Char C (x) = 1 } 

This is the representation for a crisp or non-fuzzy set.  For an ordinary set C,  the 
characteristic function is of the form 

          Char C (x):  U → { 0, 1 } 

However for a fuzzy set A we have  

          Char A (x):  U  → [ 0, 1 ] 

That is, for a fuzzy set the characteristic function takes on all values between 0 
and 1 and not just the discrete values of 0 or 1 representing the binary choice for 
membership in a conventional crisp set such as C.  For a fuzzy set the characteris-
tic function is often called the membership function and denoted µA (x).  As an 
example of a fuzzy set consider a description of mountainous terrain.  We want to 
use a linguistic terminology to represent whether an estimate of elevation is 
viewed as a low, medium, or high cost.  If we assume we have obtained opinions 
of experts knowledgeable about such terrain, we can define fuzzy sets for these 
terms. Clearly it is reasonable to represent these as fuzzy sets as they represent 
judgmental opinions and cannot validly be given precise specification.  Here we 
will provide a typical representation of a fuzzy set for the term "HIGH". 

HIGH = { 0.0 / 0.1K, 0.125 / 0.5K, 0.5 / 1K, 0.8 / 2K,  0.9 / 3K, 1.0 / 4K } 

This typical representation enumerates selected elements and their respective 
membership values as  x / µA (x).  The elements are shown in kilometers, i.e., K. It 
is also common to more fully specify the membership function µA (x) in an ana-
lytic form or as a graphical depiction.  The membership function for the represen-
tation shown as in HIGH could be fully specified by interpolation between the 
consecutive elements listed. Also extrapolation  past the first and last elements 
completes the specification,  i.e.,  

               µA (x)  = 0.0,   x ≤  0. 1K  and µA (x)  = 1.0,   x ≥  4 K 

All of the basic set operations must have equivalent ones in fuzzy sets, but there 
are additional operations based on membership values of a fuzzy set that hence 
have no correspondence in crisp sets.  We will use the membership functions µA  
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and µB to represent the fuzzy sets A and B involved in the operations to be  
illustrated.  

       Set Equality:  A  =  B  ⇔ µA (x) = µB (x)   

       Set Containment:  A  ⊆  B  ⇔µA (x) ≤ µB (x)   

            Set Complement: A  ⇔  { x / ( 1 − µA (x) ) } 

For ordinary crisp sets A ∩ A  = Ø; however,  this is not generally true for a 
fuzzy set and its complement.  This may seem to violate the law of the excluded 
middle, but this is just the essential nature of fuzzy sets.  Since fuzzy sets have 
imprecise boundaries,  we cannot place an element exclusively in a set or its com-
plement.  This definition of complementation has been justified more formally by 
Bellman and Giertz [7]. 

Set Union and Set Intersection 

   A  ∪  B  ⇔ µA ∪ B (x) = Max ( µA (x),  µB (x) )          

    A  ∩  B  ⇔ µA ∩B (x) = Min ( µA (x),  µB (x) )          
 
The justification for using the Max and Min functions for these operations is 

given in [7].  With these definitions, the standard properties for crisp sets of com-
mutativity, associativity, and so forth, hold for fuzzy sets.  There have been a 
number of alternative functions proposed to represent set union and intersection     
[18, 60].  For example, in the case of intersection,  a product definition, µA (x) * 
µB (x), has been considered. 

2.3   Rough Set Basics 

Rough set theory, introduced by Pawlak [37] is a technique for dealing with uncer-
tainty and for identifying cause-effect relationships in databases as a form of data-
base learning. They have been widely used in data mining applications. Rough 
sets involve the following: 

U is the universe, which cannot be empty, 
R is the indiscernability relation, or equivalence relation, 
A = (U,R), an ordered pair, is called an approximation space, 
[x]R denotes the equivalence class of R containing x, for any element x of U, 
elementary sets in A - the equivalence classes of R, 
definable set in A - any finite union of elementary sets in A. 

Therefore, for any given approximation space defined on some universe U and 
having an equivalence relation R imposed upon it, U is partitioned into equiva-
lence classes called elementary sets which may be used to define other sets in A. 
Given that X ⊆ U, X can be defined in terms of definable sets in A as following: 
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 lower approximation of X in A is the set  RX = {x ∈ U   |  [x]R  ⊆  X} 

 upper approximation of X in A is the set R X = {x ∈ U  |  [x]R ∩  X  ≠  ∅}. 

Another way to describe the set approximations is as follows. Given the upper 

and lower approximations R X and RX, of X a subset of U, the R-positive region 

of X is POSR(X) = RX, the R-negative region of X is NEGR(X) = U - R X, and 

the boundary or R-borderline region of X is BNR(X) = R X - RX. X is called R-

definable if and only if RX = R X. Otherwise, RX  ≠ R X and X is rough with re-
spect to R. In Figure 1 the universe U is partitioned into equivalence classes de-
noted by the squares. Those elements in the lower approximation of X, POSR(X), 
are denoted with the letter P and elements in the R-negative region by the letter N. 
All other classes belong to the boundary region of the upper approximation. 

 

                       U       

                                           

 

 

 

 

 

Fig. 1 Example of a Rough Set X 

2.4   Rough Set Modeling of Spatial Data 

Let U = {tower, stream, creek, river, forest, woodland, pasture, meadow}and let 
the equivalence relation R be defined as follows:               

R* = {[tower], [stream, creek, river], [forest, woodland], [pasture, meadow]}. 

Given some set X = { tower, stream, creek, river, forest, pasture}, we would like 
to define it in terms of its lower and upper approximations: 

 RX = {tower, stream, creek, river}, and 

               R X = {tower, stream, creek, river, forest, woodland, pasture, meadow}. 

The lower approximation contains those equivalence classes that are included 
entirely in the set X. The upper approximation contains the lower approximation 
plus those classes that are only partially included in X. In this example all the val-
ues in the classes [tower] and [stream, creek, river] are included in X so these  

N                                N                      X                        N          

                                                                                  
 
N             P                       N        
 
N  P        P          P            P                         N   
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belong to the lower approximation region. The class [forest, woodland] is not en-
tirely included in X since X does not contain ‘woodland.’ However, [forest, wood-
land] is part of the upper approximation since forest ∈ X. A rough set in A is the 
group of subsets of U with the same upper and lower approximations. In the ex-
ample given, the rough set is 

                                     {{tower, stream, creek, river, forest, pasture} 

      {tower, stream, creek, river, forest, meadow} 

          {tower, stream, creek, river, woodland, pasture} 

  {tower, stream, creek, river, woodland, meadow}}. 

Although the rough set theory defines the set in its entirety this way, for our 
applications we typically will be dealing with only certain parts of this set at any 
given time. The major rough set concepts of interest are the use of an indis-
cernibility relation to partition domains into equivalence classes and the concept 
of lower and upper approximation regions to allow the distinction between certain 
and possible, or partial, inclusion in a rough set. 

The indiscernibility relation allows us to group items based on some definition 
of ‘equivalence’ as it relates to the application domain. We may use this partition-
ing to increase or decrease the granularity of a domain, to group items together 
that are considered indiscernible for a given purpose, or to “bin” ordered domains 
into range groups. In order to allow possible results, in addition to the obvious, 
certain results encountered in querying an ordinary spatial database system, we 
may employ the use of the boundary region information in addition to that of the 
lower approximation region. The results in the lower approximation region are 
certain. These correspond to exact matches. The boundary region of the upper ap-
proximation contains those results that are possible, but not certain. 

3   Applications 

There have been many applications of both fuzzy and rough set theory to various 
topics related to spatial data.  In following we discuss a number of these important 
applications and present details on significant ones. 

3.1   Fuzzy Set Terrain Modeling 

Several approaches to deriving fuzzy representation of terrain features from digital 
elevation models (DEM) have been proposed.  Skidmore [47] used Euclidean dis-
tances of a given location to the nearest streamline and ridgeline to represent the 
location’s relative position, but a Euclidean distance is often not sufficient to rep-
resent local morphological characteristics.  Irvin et al. [27] performed a continu-
ous classification of terrain features using the fuzzy k-mean method. As a basi-
cally unsupervised classification, the fuzzy k-mean method sometimes has 
difficulty in producing results that satisfactorily match domain experts’ (e.g., soil 
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scientists) views on landscapes.  MacMillan et al. [33] developed a sophisticated 
and comprehensive rule-based method for fuzzy classification of terrain features 
that requires intensive terrain analysis operations and has a high demand for users’ 
knowledge of local landform.  

Another method [45] derives the fuzzy membership of a test location as being a 
specific terrain feature based on the location’s similarity to the typical locations of 
that terrain feature. This can be very useful for special terrain features that have 
very unique meanings to soil-landscape analysts as unique soil conditions often 
exist at such locations. A definition-based and a knowledge-based approach are 
given as ways to specify typical locations. Where there is a clear geomorphology, 
simple rules based on the definitions can be used to determine the typical loca-
tions.  For example there are algorithms for determining ridgelines and streamlines 
that can be used.  However, if a terrain feature has only has a local or regional 
meaning, finding the typical location may require knowledge from local experts.  
This may be captured through manual delineation using a GIS visualization tool. 

The similarities of any other location to those specified typical locations can be 
evaluated based on a set of selected terrain attributes such as elevation, slope gra-
dient, curvatures, etc.  The process of assigning fuzzy membership value to a loca-
tion then consists of three steps: 

 1. Evaluation of similarity of a test location and a typical location at the indi-
vidual terrain attribute level.  

 2. Integration of similarities on individual terrain attributes yielding overall 
similarity between test location and a typical location. 

3. Integration of test location’s similarities to all typical locations producing a 
final fuzzy membership of the test location for being the terrain feature un-
der concern.  

3.2   Rough Sets for Gridded Data 

Often spatial data is associated with a particular grid. The positions are set up in a 
regular matrix-like structure and data is affiliated with point locations on the grid. 
This is the case for raster data and for other types of non-vector type data such as 
topography or sea surface temperature data. There is a tradeoff between the reso-
lution or the scale of the grid and the amount of system resources necessary to 
store and process the data. Higher resolutions provide more information, but at a 
cost of memory space and execution time. 

If we approach the data from a rough set point of view, we can see that there is 
indiscernibility inherent in the process of gridding or rasterizing data. In Figure 2, 
for example, there are grid locations that represent the various lake, chemical 
plant, forest, boatyard, residential, and other classifications. Some grid points are 
directly on one of these classifications and some are in between one or more of 
them. A data item at a particular grid point in essence may represent data near the 
point as well. This is due to the fact that often point data must be mapped to the 
grid using techniques such as nearest-neighbor, averaging, or statistics. We may 
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Fig. 2 Gridded data for land classification showing coarse grid lines 

set up our rough set indiscernibility relation so that the entire spatial area is parti-
tioned into equivalence classes where each point on the grid belongs to an equiva-
lence class. If we change the resolution of the grid, we are in fact, changing the 
granularity of the partitioning, resulting in fewer, but larger classes. 

3.3   Fuzzy Triangulated Irregular Networks 

Triangulated Irregular Networks (TINs) are one common approach to represent 
field data as opposed to object-based spatial data. A TIN is based on a partition of 
the two-dimensional space into non-overlapping triangles.  Extensions of TINs 
[54] have been developed using fuzzy membership grades, fuzzy numbers and 
type-2 fuzzy sets.  The ETIN structure uses a mapping function that specifies a 
property F of a geographic area.  Consider the description of a specific site under 
evaluation for purchase as “Close to” New York. So a value of 1 for the function 
indicates the site is near (or in) New York;  0 means the location is actually far 
(not close) from New York and intermediate  values such as  0.6 implies the site 
might be considered as being more or less close to the city.   

Another TIN extension is based on fuzzy numbers with triangular membership 
functions, as these provide a simple model for a fuzzy number. To use fuzzy num-
bers in the ETIN, it is necessary to extend the type with the associated data value 
in a point from a simple (crisp) value to a fuzzy set. This can be accomplished at 
every point of the region under consideration by associating a triangular member-
ship function. Three characterizing points are then of importance: the two points 
where the membership grade equals 0 which delimit the membership function, and 
the intermediate point for which the membership grade equals 1. 
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Finally the ETIN structure can use type-2 fuzzy sets, a generalization of regular 
fuzzy sets, allowing imprecision as well as uncertainty regarding the membership 
grades to be modeled.  Consider the certainty about the extent to which a site is 
"close to" New York.  When describing for example the location of some individ-
ual, there might be doubt as to exactly where they are located.  The person could 
be located close to New York, but also near Newark, New Jersey.  A type-2 fuzzy 
set allows this doubt to be modeled: With this approach, the membership grade on 
every location is extended to a "fuzzy" membership grade. As a result, every point 
will now have an associated fuzzy set over [0,1]. 

3.4   Fuzzy Spatial Interpolation 

Since as we have seen geographical data are a combination of fuzzy and crisp data 
types there is a need to rely on the application of fuzzy based interpolation tech-
niques. When interpolation data are not sets of real numbers but ranges of values 
whose distribution within the range are qualitative, sample data have to be deter-
mined with a theory of possibility. For example, geological data may be collected 
from wells where it is not obvious from the sample description the exact compo-
nent percentages of clay, sand, or silt. A fuzzy interpolation approach [17] is de-
rived from gradual rules that in fact fully capture the interpolation process. The 
formulations are given on the basis of linear interpolation that uses fuzzy and pre-
cisely known – crisp data which has roots in the fuzzy Lagrange interpolation 
theorem. This approach has been applied to two dimensional spatial interpolation 
based on fuzzy Voronoi diagrams, fuzzy function estimator, three dimensional 
spatial interpolation based on fuzzy neural networks, and GIS based fuzzy  
spatio-temporal interpolation. 

For example a fuzzy Voronoi approach can be applied to thematic maps repre-
sented by polygons with categories such as forest types where each polygon is as-
signed specific attributes (e.g. wood volume). Polygon boundaries are uncertain 
because of varying interpretations of imagery data. Distributions of attribute val-
ues over surfaces are not reliable because of sparseness of in situ measurements. 
Since most geographic attributes are not of a continuous nature, spatial interpola-
tion is needed to create a continuous surface of selected attributes and to represent 
the transition zones between polygons. These issues can be resolved using fuzzy 
Voronoi diagrams first by constructing Voronoi diagrams around known points 
with well-specified attributes. The next step positions a “query point” in the Vo-
ronoi diagram and a new diagram reconstructed as if the query point was one of 
the original data points. Thus, new polygons are delineated containing the area 
stolen from the original polygons. The percentage of the stolen area from each po-
lygon constitutes the fuzzy membership value for a thematic category represented 
by the corresponding original polygon. If a grid of query points is processed over 
the entire surface at regular intervals, a series of grid points with fuzzy member-
ship values are produced for each geographic category. Linear interpolation can 
then be used to produce a continuous surface that can be stored in a raster GIS 
format. The attributes of interest are evaluated at any location on the defined fuzzy 
map by multiplying the mean estimated volume of the particular attribute for each 
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geographic category by the corresponding fuzzy membership value over all geo-
graphic categories. 

In a GIS spatial data is represented by snapshot layers corresponding to time in-
tervals limiting by the temporal granularity spatial change detection. Fuzzy temporal 
interpolation [16] uses fuzzy probable trajectories of gradual progression from one 
class to another. The degrees of membership in a specific class at a particular inter-
mediate space-time location are calculated using fuzzy set membership functions. 

In [24] a spatial interpolation technique is described that is based on conserva-
tive fuzzy interpolation reasoning for interpolating fuzzy rules in sparse fuzzy rule 
bases. The technique works best in local spatial interpolation so a self-organizing 
map is used to divide the data into subpopulations in order to reduce the complex-
ity of the whole data space to more homogeneous local regions. 

4   Representation of Spatial Relations 

Relationships among spatial objects can generally be classified in three types: 

1. Topological -  Touches, Disjoint, Overlap, …     
  French border touches German border  

2. Directional -    East, North-West, …   
 Prague is East of Frankfurt  

3. Metric –          Distance     
   Wien is about 50 kilometers from Bratislava 

Many topological relations between two objects A and B can be specified using 
the 9-intersection model which uses the intersections between the interior, bound-
ary and exterior of A and B [21].  This section will describe a variety of ap-
proaches introducing uncertainty into these relationships. 

4.1   Spatial Relations 

In [36], Papadias and his colleagues present an approach for determining configu-
ration similarity for spatial constraints involving topology, direction and distance.  
The approach utilizes extended objects for direction and topology, and centroids 
for distance.  They handle uncertainty in the areas of fuzzy relations, e.g., an ob-
ject that satisfies more than one directional constraint, as well as fuzziness related 
to linguistic relationship terms. The concept of graded sections, allows comparison 
of alternative conceptualizations of direction [30]. To describe graded sections, 
section bundles are introduced, providing a formal means to (1) compare alterna-
tive candidates related via a direction relation like “north” or “south-east,” (2) dis-
tinguish between good and not so good candidates, and (3) select a best candidate. 
Vazirgiannis [53] also considers the problem of representing uncertain topologi-
cal, directional, and distance relationships on the assumption of crisply bounded 
objects.  All relationship definitions for this approach are centroid-based. A mini-
mal set of topological relations, overlapping and adjacency, are defined based on 
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Egenhofer’s boundary/interior model.  This model is enhanced by providing de-
grees of relationship satisfaction.  Direction relations are defined by a sinusoidal 
function based on the angle between two objects’ centroids. Close and far are the 
two categorizations of distance directions.  Membership assignment to one of 
these categories is determined by the ratio of the distance to a maximum applica-
tion-dependent distance. The three relationships are combined for query retrieval.  
Afterward, a similarity measure is computed for each relationship and then com-
bined into a single, overall similarity measure.  Another approach to spatial rela-
tions uses the histogram of forces [34] to provide a fuzzy qualitative representa-
tion of the relative position between two dimensional objects. This can also be 
used in scene description where relative positions are represented by fuzzy lin-
guistic expressions. In Guesgen [25] we see the introduction of several approaches 
for reasoning about fuzzy spatial relations, including an extension of Allen’s algo-
rithm and additionally methods for fuzzy constraint satisfaction. Also relevant is 
[20] which presents a unified framework for approximate spatial and temporal 
reasoning using topological constraints as the representation schema and fuzzy 
logic for representing imprecision and uncertainty. The application of the resulting 
fuzzy representation to each of Allen's interval relationships is developed as the 
possibility of the occurrence of the conditions of the original definition. 

Yet another approach of Cobb and Petry [12] is based on minimum bounding 
rectangles (MBRs) and Allen’s relationships.  An MBR is an approximation of the 
geometry of spatial objects and is defined as the smallest X-Y parallel rectangle 
which completely encloses an object.  The use of MBRs in geographic databases 
is widely practiced as an efficient way of locating and accessing objects in space. 
An extension into the spatial domain of Allen's temporal relationships [1] repre-
sents any relationship that can exist between two one-dimensional (temporal) in-
tervals including: before, equal, meets, overlaps, during, starts, and finishes, along 
with their inverses. 

Given the minimum bounding rectangles of two objects, the binary relationship 
between the objects in both the horizontal and vertical directions can be com-
pletely defined by a tuple, [rx, ry], where rx is the one of the described above 
Allen's temporal relations that defines the interaction of the object MBRs in the x 
direction, and ry represents the same for the y direction. For example, for the case 
of the relationship, A [finishes, starts] B, the definition is given as:  

{ Bxl < Axl < Bx2, Ax2 = Bx2, Byl < Ay2 < By2, Ayl = By1 } 

where {xl,y1} and {x2, y2} represent the lower left and upper right corners, re-
spectively, of the minimum bounding rectangles. In Figure 3 is an example set of  
four object MBRs, {A,B,C,D}. A subset of the existing relationships between  
them consists of:  

{A  [ before, overlaps ]  B;  B [ before, overlaps –1 ] C; D [ during, meets ] C }. 
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Fig. 3 Object for MBR Relationship Description 

Again we can use the notation of representing one of Allen’s relations by its initial 
letter and so we have determined for the relation partially-surrounded-by :  

                                { [df] [fd] [do] [ds] [od] [sd] [do-l] }     

These basic relationship definitions can be used in a similar manner for defining 
directional relationships: N, S, E, W, NE, SE, SW, NW. Given the spatial extent 
of two-dimensional objects, it is very likely that in any one case, more than one of 
the eight directions listed above will apply, to either a greater or lesser degree.  So 
a method for defining directional relationships that would allow for fuzzy query-
ing of any of the directional relationships that exists between two objects is 
needed The concept of object sub-groups is then used as a basis for determining 
the set of directions that defines the directional relationship between two objects. 

Definitions for directions can now be defined in a manner analogous to the way 
in which qualitative topological relationships were defined earlier. The definition 
for any particular direction includes the set of all relationships containing that di-
rection as a member of its direction set. The definition for the direction East is 
shown below as an example. 

        E ::={[dd],[df],[fd],[do],[ds], [ff],[d=],[fo],[fs],[f=],[dd-1],[do-1], …} 

The basic relationship definitions and their use in defining relevant directional and 
qualitative topological relationships can then be used to provide a framework for 
the abstract spatial graph (ASG), a spatial data structure specifically designed to 
retain orientation and topological information with respect to two-dimensional ob-
jects, and to provide information to support fuzzy querying capabilities on these 
relationships. 

The ASGs categorize the original relationships according to the level of interac-
tion of the MBRs into four distinct categories: disjoint, tangent, overlapping and 
containment.  
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Fig. 4 Application of thresholding for ASG construction of [fo] relationship 

Figure 4 shows the construction of an abstract spatial graph for the [fo] relationship 
using a thresholding technique. We will note that the northeastern and northwestern 
axes for sub-group B1, as well as the southeastern and southwestern axes for 
sub-group A1, are discarded, so that the node on the northern axis of the ASG singu-
larly represents B1; the node on the northwestern axis represents B2; the node on the 
western axis represents B3; and the node on the southern axis represents A1. The cen-
ter node of the ASG represents the sub-groups A2 and B4—the reference area. In addi-
tion to providing information directly relevant to the representation of the abstract spa-
tial graph, we also needed to represent ancillary information that can be used for fuzzy 
query inferences. This information is represented in the form of node "weights" that 
can then be used for the defining of both fuzzy topological and directional qualifiers 
for use with a fuzzy query framework. 

Calculation of weights uses both the areas of object sub-groups and the lengths of 
axes that pass through object sub-groups. Three different types of weights are com-
puted: axis weights, area weights and node weights. The area weights and total node 
weights of ASGs directly support fuzzy queries regarding qualitative topological and 
directional information in two specific ways. Area weights provide an indication of the 
degree to which an object participates in a qualitative topological relationship. By 
mapping ranges of area weights to linguistic qualifiers such as some, most, etc., fuzzy 
information such as "some of object A overlaps most of object B," can be determined. 

Total node weights, on the other hand, are used to indicate the extent to which 
one object can be considered to lie in a certain direction with respect to a second 
object. Again, ranges of weights can be correlated to linguistic terms, e.g. slightly, 
mostly, to provide qualifiers for directional orientation. Then, for example, one 
could determine that, while object A is slightly southwest of object B, it is at the 
same time mostly west of object B. 

So we can determine for our example of Figure 3 that:  

 1. B is mostly west of C 

 2. Little of B is northeast of A 

 3. D is directly south of C 

4. C is slightly southeast of B 
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4.2   Topological Spatial Relationships for Vague Regions 

The interplay of topological relations and nearness lies at the core of the motiva-
tion of the formalism developed in a series of papers by Schockaert et.al  [42 
43,44]. These papers provide characterizations of the fuzzy spatial relations, cor-
responding to the particular case where connection is defined in terms of closeness 
between fuzzy sets. Also generalization of region connection calculus (RCC) is 
based on fuzzy set theory, and a development of  how reasoning tasks such as sat-
isfiability and entailment checking can be cast into linear programming problems. 

Keukelaar [28] develops an approach for rough spatial topological relations  
using 3-valued logic, allowing “maybe” answers to queries about the spatial rela-
tionships between objects. Wang et.al [56] deal with imprecise spatial relation-
ships in a straightforward manner for the 9-intersection model.  In this they  
replace the interior, exterior and boundary with positive, negative and boundary 
regions in a rough set sense based on the lower and upper approximations. A 
rough matrix representation facilitates computation of rough topological relation-
ships among several spatial objects. In Zhan [62] a method is developed for ap-
proximately analyzing binary topological relations between geographic regions 
with indeterminate boundaries. It shows the eight binary topological relations be-
tween regions in a two-dimensional space can be easily determined by this  
method. 

A computational fuzzy topology can be developed  based on the interior opera-
tor and closure operator [32]. These operators are further defined as a coherent 
fuzzy topology—the complement of the open set is the closed set and vice versa; 
where the open set and closed set are defined by interior and closure operators—
two level cuts. The elementary components of fuzzy topology for spatial objects—
interior, boundary and exterior—are thus computed based on the computational 
fuzzy topology.  Yet another approach proposes basic fuzzy spatial object types 
based on fuzzy topology [52]. These object types are a natural extension of current 
non-fuzzy spatial object types. A fuzzy cell complex structure is defined for  
modeling fuzzy regions, lines and points. Furthermore, fuzzy topological relations 
between these fuzzy spatial objects are formalized based on the 9-intersection  
approach. 

In [9] Bittner and Stell present an approach to spatial relations where the con-
sideration of uncertainty is based on the case in which there is limited resolution 
of spatial data and using approximations that have a close relationship to rough 
sets.  They develop two methods for approximating topological relations, syntactic 
and semantic.  In the first, use is made of the set of precise regions which could be 
an interpretation of the approximate regions.  The syntactic approach also uses al-
gebraic operations which generalize operations on precise regions by using pairs 
of greatest minimal and least maximal meet operations to approximate the crisp 
meet used for defining topological relations. 

Rough set [4] and egg-yolk [13] approaches can also be used to model spatial 
relationships. In spatial data, it is often the case that we need information concern-
ing the relative distances of objects. Is object A adjacent to object B?  Or, is object 
A near object B? The first question appears to be fairly straightforward. The  
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system must simply check all the edges of both objects to see if any parts of them 
are coincident. This provides what would be certain results in the ideal case . 
However, often in a GIS, data is input either automatically via scanners or digi-
tized by humans, and in both cases it is easy for error in position of data objects to 
occur. Therefore, it might be desirable to have the system check to see if object B 
is very near object A, to derive a possible result. If so, the user could be informed 
that “it is not certain, but it is possible, that A is adjacent to B.” One may want to 
know whether a cliff is next to the sea. If the system returns the result that it is 
possible, but not certain, that the cliff is adjacent to the sea, for example, he may 
be led to investigate the influence of the tides in the area to determine whether low 
beaches alongside the cliffs are exposed at low tide. 

The concepts of connection and overlap can be managed by rough sets in a similar 
manner to the above. Connection is similar to adjacency, but related to line type ob-
jects instead of area objects. Overlap can be defined in a manner similar to that of 
nearness with the user deciding how much overlap is required for the lower approxi-
mation. Coincidence of a single point may constitute possible overlap, as can very 
close proximity of two objects, if there is a high degree of positional error involved in 
the data. 

Inclusion is related to overlap as follows. If an object A is completely surrounded 
by some other object B, perhaps we can conclude with certainty that A is included in 
B, lacking any additional information about the two objects. If the two objects overlap, 
then it may be possible that one of the objects includes the other. Approximation re-
gions can be defined to reflect these concepts as well. 

Both the rough set and egg-yolk approaches are useful for managing the types of 
uncertainty and vagueness related to topology, a few of which were just briefly dis-
cussed. These include concepts such as nearness, contiguity, connection, orientation, 
inclusion, and overlap of spatial entities. 

If we are only concerned about the vagueness of boundaries, we may be in-
clined to use the egg-yolk approach [13], since this approach does not include any 
partitioning of the space into equivalence classes as does rough sets. In this ap-
proach concentric subregions make up a vague region, with inner subregions  
having the property that they are ‘crisper’ than outer subregions. These regions in-
dicate a type of membership in the vague region. The simplest case, is that of two  

   

        1  2  3 

       4            5             6             7  

Fig. 5 A sample of the 46 possible relationships between regions X (dashed line) and Y 
(dotted line). A solid line indicates coincidence of an X and Y region boundary. 
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subregions. In this most common case, the center region is known as the yolk, the 
outer region surrounding the yolk is known as the white, and the entire region, as 
the egg.  Figure 5 depicts a sample of these relationships. 

The yolk and egg regions correspond to the lower and upper approximation re-
gions of rough sets respectively. The rough set theory has only these two ap-
proximation regions, unlike the possible numerous subregions that may make up a 
vague region in the egg-yolk method. However, because of the indiscernibility re-
lation in rough sets, one can vary the partitioning in order to increase or decrease 
the level of uncertainty present, which results in changes to the approximation 
regions. 

Consider specifically the results of Cohn and Gotts [13] who delineate forty-six 
possible egg-yolk pairs showing all of the possible relationships between two va-
gue regions. The forty-six configurations of egg-yolk pairs were clustered into 
thirteen groups based on RCC-5 [40] relations between complete crispings, or re-
lations that are “mutually crispable”. Each cluster relates to one or more additional 
clusters via a crisping relationship or a subset relationship between a set of com-
plete crispings.  

The clustering of egg-yolk pairs can also be viewed by noting that the relation-
ships for each cluster based on mathematical principles from rough sets. We now 
recall that “crisping” from the egg-yolk theory can also be related to forcing a fin-
er partitioning on the domain for the rough sets. Some definitions from rough set 
theory used in categorizing the clusters include: 

 
Equality of 2 rough sets: 

Two rough sets X and Y are equal, X = Y, if RX = RY and R X = R Y. 

 
Intersection of two rough sets:  

R(X∩Y) = RX ∩ RY, and R (X∩Y) = R X ∩ R Y. 

 
Subset relationship: 

X ⊂ Y implies that RX ⊂ RY and R X ⊂ R Y. 
 

In [4] properties of rough sets are used to define the crispings in the various topo-
logical clusters as well as the spatial relationships themselves. Figure 6 shows the 
relationships between clusters based on the levels of crisping from one cluster to 
another. Numbers within each cluster represent each of the 46 egg-yolk pairs of 
Cohn and Gotts [13] denoting uncertain spatial relationship for two vague regions. 
Within the hierarchy an arrow from one cluster to another means that there is 
some property of rough sets theory that is added to those properties of the begin-
ning cluster in order to make it more “crisp.”  
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Fig. 6 Clustering of egg-yolk relationships 

Spatial and geographical information systems will continue to play an ever-
increasing role in applications based on spatial data. Uncertainty management will 
be necessary for any of these applications, and both rough sets and egg-yolk me-
thods are appropriate for the representation of vague regions in spatial data. Rough 
sets, however, can also model indiscernibility and allow for the change of granu-
larity of the partitioning through its indiscernibility relation, which has an effect 
on the boundaries of the vague regions, and also allows the extension of egg-yolk 
regions from continuous to discrete space. The clustering of egg-yolk pairs by 
RCC-5 relations can be expressed in terms of operations using rough sets, and 
rough set techniques can further enhance the egg-yolk approach. The interrelation-
ships between rough set, egg-yolk, and RCC models merit further study. 

5   Mining Spatial Information 

5.1   Spatial Data Mining 

An approach [31] to the discovery of association rules for fuzzy spatial data com-
bined and extended techniques developed in both spatial and fuzzy data mining in 
order to deal with the uncertainty found in typical spatial data.   It attempts to un-
cover correlations of spatially related data such as soil types, directional or geo-
metric relationships, etc.  For example an association rule that can be discovered 
by mining appropriate spatial data is:  

If C is a small city and has good terrain nearby then there is a road nearby 
with 90% confidence. 
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Such a rule incorporates fuzzy information in the linguistic terms used such as 
“small” and “nearby”. 

In the spatial data mining area there have only been a few efforts using rough 
sets. In the research described in [3], Beaubouef et.al. have investigated 
approaches for attribute induction knowledge discovery in rough spatial data.  
Bittner [8] considers rough sets for spatio-temporal data and how to discover char-
acteristic configurations of spatial objects focusing on the use of topological 
relationships for characterizations.  In a survey of uncertainty-based spatial data 
mining, Shi et al. [46] provide a brief general comparison of fuzzy and rough set 
approaches for spatial data mining. 

5.2   Fuzzy Minimum Bounding Rectangles 

To utilize minimum bounding rectangles for vague regions, in [50] a fuzzy MBR 
(FMBR) is defined as consisting of nested rectangles.  The inner rectangle is the 
MBR over the core of the vague region (certain region or membership =1). The 
outer rectangle is an MBR over the outer boundary of the vague region.  This ap-
proach allows the consideration of common indexing approaches such as grid files 
or R-trees. 

A vague region is one whose boundaries are or can not be precisely defined and 
we can consider them as being of two main components: the core and the bound-
ary. The core and the boundary are approximated by their minimum bounding rec-
tangle (MBR) respectively. A fuzzy representation, called Fuzzy Minimum 
Bounding Rectangles (FMBR) [49], can represent the different degrees of mem-
bership of the point located inside the vague region. 

Geographic features are a direct representation of geographic entities rather 
than geometric elements such as a point, line or polygon. A feature is then defined 
as an entity with common attributes and relationships. The FMBR [48, 49] repre-
sents the generalization of the underlying irregular polygon delimiting the fuzzy 
region since the FMBR encloses all the points of the map space where our feature 
of interest is located. 

The FMBR can be also considered as the circumscribed rectangle (CR) of the 
underlying fuzzy polygon. Iterative generation of inner bounding rectangles is per-
formed until we have the inscribed rectangle (IR) of the underlying object. So, the 
IR is the maximum inner rectangle inside the object, and it corresponds to the core 
of the fuzzy region. Distances between the IR and the FMBR are used to represent 
the fuzzy boundary.  

A spatial membership function based on Euclidean distance will be used to de-
termine the degree of belonging of a feature to the fuzzy set. Thus, features inside 
the IR or core will have degree of membership of 1. This degree will be gradually 
decreased while we move away from the core. Points located outside of the FMBR 
will have a membership degree of 0. 

An FMBR is a natural representation for many commonly occurring spatial 
situations. The problems of identifying a spatial boundary have been under con-
siderable attention for the GIS area [11]. For example consider photo-interpreters 
who are trying to label a forest in an image. There is clearly a region (core) which 



122 T. Beaubouef and F.E. Petry
 

all agree is the heart of the forest and merits the specific labeling. However, as the 
forest thins out into meadows all around, there is no sharp boundary delimiting the 
forest area. Rather the density of the trees decreases gradually until there is just 
open meadow land. It is just such a situation that we are trying to model by means 
of an FMBR. 

A graphical representation of the fuzzy minimum bounding rectangle, as de-
scribed above, is illustrated in Figure 7. The underlying vague region Ậ is approxi-
mated by the FMBR (Ậ). This  first approximation is also called the circumscribed 
rectangle (CR) of the fuzzy region. In other words, the FMBR or CR corresponds to 
the minimal rectangle with edges parallel to the x and y axes that optimally enclose 
the vague region Ậ.  

Boundary   Ã

Exterior  Ã¯ 

FMBR(Ã) 

MBR

 

Fig. 7 FMBR Representation 

αMBR-cuts allow us to make finer distinctions inside the fuzzy region since 
αMBR-cuts are individual crisp regions inside the FMBR Thus, we can think of a 
fuzzy structured region as an aggregation of crisp α-level regions. αMBRs start to 
be defined from the edge of the FMBR(Ậ) to the core of (Ậ). The more external 
the αMBR-cut the lower the degree of membership in the fuzzy set representing 
(Ậ) as locations which are closer to the core will have higher membership degrees. 
The shadowed rectangle labeled as Core corresponds to the inscribed rectangle. 
Since the IR is totally inside (Ậ) we assume that the points in the core belong to 
the fuzzy region with a membership 1.0. Details about the representation and spa-
tial relationships of FMBRs can be found in [49], [50]. 

Now we can discuss an approach to an indexing structure that could be used to 
represent FMBRs. One commonly used index structure in spatial data bases is the 
R-tree [26] which is the basis of all R-tree variants. Each node corresponds to a 
disk page and a n-dimensional rectangle. Any entry in the tree is a pair (ref, rect), 
where ref is the address of the child node and rect is the MBR of all entries in that 
child node. The root has at least 2 children if not a leaf node. The number of en-
tries in each node is between m (fill-factor) and M (number of entries that can fit 
in a node), where 2 ≤ m ≤ M/2. All leaves are at the same level. Leaves contain 
entries of the same format, where ref points to a database object, and rect is the 
MBR of that object. An object appears in one, and only one of the tree leaves. R-
trees are dynamic structures since insertion and deletion can be intermixed with 
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queries and no periodic global reorganization is required. The external memory 
structure is multi-way and it is indexed by MBRs.  

R-trees present several weaknesses mainly due to the overlap between buckets 
regions at the same tree level. Moreover, the region perimeters should be mini-
mized in order to avoid insertion problems. Insertion requires multiple paths of the 
tree, since the inserted spatial feature may intersect more than one intermediate 
node, and its clipping parts should be inserted in leaves under all such nodes. R*-
trees are variations that avoid some of these problems. Representing FMBRs using 
an R*-tree structure was found very suitable since we can take advantage of the 
MBR representation of the objects in this model. Figure 8 corresponds with our 
FMBR R*-tree description. 

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 8 Spatial Representation of αMBR-cuts 

Since we are interested in treating each αMBR-cut independently we have lo-
cated each of them as root nodes of the tree. This structure allows us to access the 
features inside the vague region with a specific degree of membership following a 
unique path from the root. In addition, geographically close features belonging to 
the same αMBR-cut can be grouped in MBRs to improve the retrieval process. 

mbr122mbr121 mbr122mbr121 mbr222mbr221 mbr222mbr221 mbr312mbr311 mbr312mbr311 mbr412mbr411 mbr412mbr411 mbr512mbr511 mbr512mbr511

mbr53mbr52mbr51 mbr53mbr52mbr51mbr12mbr11 mbr12mbr11 mbr22mbr21 mbr22mbr21 mbr32mbr31 mbr32mbr31 mbr43mbr42mbr41 mbr43mbr42mbr41

MBR5MBR4MBR3MBR2MBR1 MBR5MBR4MBR3MBR2MBR1

 

Fig. 9 FMBR R*-Tree Representation 

The R*-Tree of the Figure 9 contains five nodes at the root corresponding to 
the core, and the four αMBRs approximating the boundary. The core αMBR1 has 
two MBRS: mbr11 and mbr12, and mbr12 contains mbr121 and mbr 122. A similar 
structure is maintained in the remaining nodes. 
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5.3   Rough Object Oriented Spatial Database 

Object-oriented databases have become quite popular for many reasons.  Classes 
and inheritance allow for code reuse through specialization and generalization, 
and encapsulation packages the data and methods that act on the data together in 
an object. Objects can be defined to represent very complex data structures and to 
model relationships in the data, as is often the case with spatial data. Object mod-
eling helps in understanding the requirements of an enterprise, and object-oriented 
techniques lead to high quality systems that are easy to modify and to maintain. 
Because many newer applications involving CAD/CAM, multimedia and GIS are 
not suitable for the standard relational database model, object-oriented databases 
may be developed to meet the needs of these more complex applications. 

A formal generalized model for object-oriented databases was extended to in-
corporate rough set techniques in [5] where the rough set concepts of indis-
cernibility and approximation regions were integrated into a rough object-oriented 
framework. In this model there is a type system, ts, containing literal types Tliteral, 
which can be base types, collection literal types, or structured literal types. It also 
contains Tobject, which specifies object types, and Treference, the set of specifications 
for reference types.  

Each domain is a subset of the set of domains, domts ∈ Dts. This domain set, 
along with a set of operators Ots and a set of axioms Ats, capture the semantics of 
the type specification. The type system is then defined based on these type specifi-
cations, the set of all programs P, and the implementation function mapping each 
type specification for a domain onto a subset of the powerset of P that contains all 
the implementations for the type system. Of particularly interested are object types 
defined as : 

Class id(id1:s1; …; idn:sn)      or 

Class id: id 1 , …, id n(id1:s1; …; idn:sn) 

where id, an identifier, names an object type, { id i | 1 ≤ i ≤ m} is a finite set of 
identifiers denoting parent types of t, and { idi:si | 1 ≤ i ≤ n} is the finite set of 
characteristics specified for object type t within its syntax. This set includes all the 
attributes, relationships and method signatures for the object type. The identifier 
for a characteristic is idi and the specification is si for each of the idi:si. 

Consider a GIS which stores spatial data concerning water and land forms, 
structures, and other geographic information. If simple types are previously de-
fined for string, set, geo, integer, etc., then one may specify an object type as 
 

Class ManMadeFeature ( 
 Location: geo; 
 Name: string; 
 Height: integer; 
 Material: Set(string)); 

 



Fuzzy and Rough Set Approaches for Uncertainty in Spatial Data 125
 

An example instance of the object type ManMadeFeature might be 
 

[oid1, Ø, ManMadeFeature, Struct(0289445, “KXYZ radio tower”, 60, 
Set(steel, plastic, aluminum))] 

following the definition of instance of an object type [15], the quadruple o = [oid, 
N, t, v] consisting of a unique object identifier, a possibly empty set of object 
names, the name of the object type, and for all attributes, the values (vi ∈ domsi) 
for that attribute, which represent the state of the object. The object type t is an in-
stance of the type system ts and is formally defined in terms of the type system 

and its implementation function t = [ts, f type
impl (ts)]. 

Rough set uncertainty is modeled through the indiscernibility relations speci-
fied for domains and class methods for approximation region results. Each domain 
class i in the database, domi ∈ Di, has methods for maintaining the current level 
of granulation, changing the partitioning, adding new domain values to the hierar-
chy, and for determining equivalence based on the current indiscernibility relation 
imposed on the domain class. Every domain class, then, must be able to not only 
store the legal values for that domain, but to maintain the grouping of these values 
into equivalence classes. This can be achieved through the type implementation 
function and class methods, and can be specified through the use of generalized 
constraints as in [15] for a generalized object-oriented database. 

The semantics of rough set operations discussed for relational databases in [6] 
apply similarly for the object database paradigm. However, the implementation of 
these operations is done via methods associated with the individual object classes. 
The incorporation of rough set techniques into an object database model allow not 
only for the management of uncertainty in spatial data, but also for the representa-
tion of complex data relationships and the defining of methods for special cases 
that often exist in GIS. 

6   Conclusions and Future Directions 

Fuzzy and rough set approaches are increasingly being applied to many areas of 
spatial data.  In this chapter we presented ways in which rough and fuzzy set un-
certainty management may be integrated into applications involving spatial data. 
We reviewed rough sets, an important mathematical theory, applicable to many 
diverse fields. Rough sets have predominantly been applied to the area of knowl-
edge discovery in databases, offering a type of uncertainty management different 
from other methods such as probability, fuzzy sets, and others. Both rough set and 
fuzzy set theory can also be applied to database models. 

The chapter also discussed the use of rough and fuzzy set techniques for the rep-
resentation of spatial data relationships, terrain modeling, gridded data, triangulated 
irregular networks, and spatial interpolation. Their use in the modeling of topologi-
cal spatial relationships for vague regions was presented, and their integration into 
and data mining of object-oriented and other spatial databases discussed. The main 
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emphasis for future work is the incorporation of some of these research topics into 
mainstream GIS commercial products. 
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